APPENDIX A

S TRIG OL.
-},A String Oriented Language L

GPO PRICE $

CFSTI PRICE(S) $

3.0

Hard copy (HC)

Microfiche (MF)

f 663 July 65

(':f September 1967 (J
| New Mexico State University

University Park, New Mexico 72
g
Phone: 646-4108

!

¢ .
/

The STRIGOL language was designed and implemented by Edward H. Harris.

The work was partially supported by a grant from the National Aeronautics
and Space Administration Sustaining Grant, }\!GR-32-003—027.\
hY

P

INTRODUCTION

Since the late 1950's, a number of compiler-level programming languages have been
developed for use in primarily non-numerical applications. These languages have
been of two types: 1list processing languages such as LISP, IPL-V, and L-6, and
string manipulation languages such as COMIT and SNOBOL. The STRIGOL programming
language has been developed in order to meet the growing need for string manipu-
lation languages. The basic operations in STRIGOL are designed to facilitate

the examination and manipulation of strings of data. In addition, limited arith-
metic capabilities and internal subroutine capabilities are available. Three
sample programs which are included in Appendix A illustrate the types of problems
which STRIGOL is best suited for: example 1 is a program to find the longest com-
mon segment of two lists of data; example 2 performs a translation from the normal
infix notation used in an arithmetic expression into reverse Polish notation, such
as is done during the compilation process; example 3 is a program to edit text into
a more readable format, and thus illustrates one application of STRIGOL in the area
of linguistic analysis. The goal throughout the entire development of STRIGOL has
been to design a language which is simple to learn and use, but which provides suf-
ficient power for all types of symbol manipulation problems.

This manual is intended as a reference manual for the STRIGOL programming language,
in particular, the CDC 3300 implementation currently in use at New Mexico State
University. It is assumed that the user of this manual is already familiar with
STRIGOL. 1Included is a complete description of the STRIGOL language, the operating
environment of the CDC 3300 implementation, and a complete explanation of all com-
pilation and execution time messages. The appendices contain sample STRIGOL pro-
grams, a description of the internal specifications of the language to enable the
3300 COMPASS program to use the STRIGOL subroutines in a COMPASS program, and a
formal description of the STRIGOL scanning algorithm,

NOTATION

All notation used in this manual is exactly as is used in the CDC 3300 implemen-
tation with the exception of the quotation mark used to delimit literals. Be-
cause the quotation mark (") does not appear in the CDC 3300 character set, the
not-equal sign (#) is used in its place in the actual implementation.

II.

IIT.

IV,

VI.

VII.

VIII.

Contents

Introduction
Notation
Properties of 3300 STRIGOL
Character Set

1.1
1.2 Identifiers
1.3 Statement Format

Constants, Variables, Functions and Expressions

Constants
Variables
Functions
Expressions

NN NN
o o e
RN =

Declaration Statements

3.1 NUMBER Statement
3.2 PROGRAM Statement
3.3 END Statement

Arithmetic Replacement Statement
Control Statements

5.1 GO TO Statement
5.2 EXIT Statement
5.3 1IF Statement

String,Processing Statements

1 Replacement Statement
2 SCAN Statement

.3 Examples of Scanning
4 BACKSCAN Statement

Input-Output Statements

7.1 READ Statement

7.2 WRITE, PRINT Statements
7.3 ENDFILE Statement

7.4 REWIND, UNLOAD Statements

Routines

ROUTINE Statement
EXECUTE Statement
ENDROUTINE Statement
RETURN Statement

oo C0 00 00
NN

~N Vs N

w0 YW W

11
11
11

12
12
17
19

21
21
22
22

23
23
23
24

Page Numbers

10

11

12

21

23

IX. Operating Environment

9.1 Job Setup

9.2 Compiler Pseudo Instructions

9.3 Compilation Time Messages

9.4 Execution Time Messages
Appendices

A Sample Programs
B Internal Specifications
C The STRIGOL Scan

25
26
26
29

25

O w >
—

-1-

I. PROPERTIES OF 3300 STRIGOL

A STRIGOL program consists of a series of statements begun by a PROGRAM statement
and terminated by an END statement. Statements are normally executed sequentially;
however, this can be changed based on logical decisions during execution.

1.1 Character Set

The STRIGOL character set is composed of letters, digits, and special characters.
The alphabetic characters are the letters A through Z; the digits are the charac-
ters 0 through 9; the alphabetic characters together with the digits are called
the alphameric characters. '

There are 17 special characters which have specific meaning to the STRIGOL compi-
ler. The names and graphics for these special characters are:

Name Graphic
Equal or Replacement symbol =
Plus +
Minus

Asterisk or Multiply symbol
Slash or Divide symbol

Left parenthesis

Right parenthesis

Comna

Quotation mark or not equal symbol
Left bracket

Right bracket

Less than symbol

Greater than symbol

Less than or equal symbol
Greater than or equal symbol
Dollar sign

CFIV IA V A e N %

In addition to these characters, any character in the CDC 3300 character set can
be used as a data character.

The special characters which have meaning to the STRIGOL compiler are divided into
three classes: operators, delimiters, and separators.

Operators

Operators used in STRIGOL are divided into three types: arithmetic operators,
comparison operators, and string operators.

The arithmetic operators are:

+ denoting addition

- denoting subtraction

* denoting multiplication
/ denoting division

The comparison operators are:

denoting equal to

denoting not equal to

denoting greater than

denoting less than

denoting greater than or equal to
denoting less than or equal to

ATV A VTR

The string operator is:

, denoting concatenation
Delimiters
The delimiters in STRIGOL are:

encloses string constants

() denotes a filler in a SCAN statement
[] denotes the scanning pattern in a SCAN statement

Separators

The separators in STRIGOL are:
= used to indicate replacement in replacement and SCAN statements
$ indicates a substring variable

/ separates branch field in READ, SCAN, BACKSCAN, and IF statements

1.2 Identifiers

An identifier is a string of alphameric characters, not contained in a string
constant or comment. The first character must be alphabetic, and the total
length of an identifier must not be greater than 8 characters. Imbedded blanks
are not considered to be a part of an identifier.

Identifiers are used in STRIGOL for the following:

string names

numcrical 'variablé names
statement labels

routine names

program name

1.3 Statement Format

STRIGOL source statements are normally written on a coding sheet one to a line in
columns 10-72. If a statement is too long to fit on one line, it may be continued
by putting any character other than a blank or a "/'" (slash) in column 9 of every
line which is to be continued except the last line. (Note: This is the opposite
of how continuation lines are indicated in FORTRAN). There is no limit to the
number of continuation lines.

Columns 1-8 in the first line of a source statement may contain a statement label
to allow the statement to be referenced elsewhere in the program. Statement labels

-3-

must conform to the rules for identifiers and cannot be used elsewhere in the pro-
gram as variable names, routine names, or as other statement labels. The state-
ment label may appear anywhere in columns 1-8 and may contain blanks; however, any
imbedded blanks are not considered to be a part of the statement label, If con-
tinuation lines are labeled, the statement label will be printed during compila-
tion, but they will be ignored.

Columns 73-80 are not examined by the STRIGOL compiler and may therefore be used
for program identification, sequencing, or any other purpose.

Comments to explain the program may be written in columns 2-72 of a line if an
asterisk is placed in column 1. Comment lines may appear anywhere in the pro-
gram before the END statement, except that they may not appear in the middle

of a statement containing continuation lines. The comments are not processed
by the STRIGOL compiler, but are listed during the compilation process. Comment
lines may not be continued.

As a special feature of 3300 STRIGOL it is possible to intermix STRIGOL state-
ments and COMPASS statements in a STRIGOL program. If the character '"/" (slash)
is placed in column 9 in a statement, it is interpreted by the STRIGOL compiler
to be a COMPASS statement. There is no restriction as to the type of COMPASS
statements which can appear within a STRIGOL program except that a COMPASS state-
ment cannot be the first statement in the program and it must appear before the
END statement. For the condition of the various registers before and after calls
to the STRIGOL execution time subroutines, the programmer is referred to Appendix
B of this manual.

With the exception of COMPASS statements, all statements in a STRIGOL are com-
pletely free formatted within the allowed columns. Blanks may included or left
out arbitrarily within a source statement.

-4-

IT. CONSTANTS, VARIABLES, FUNCTIONS AND EXPRESSIONS

2.1 Constants

Numerical Constants

A numerical constant in 3300 STRIGOL is any integer within the range -223+1 to
+223_1. The sign is optional if the number is positive, and if left unsigned,
a numerical constant is assumed to be positive.

Ex les
3

+1

-0
-12345

String Constants

A string constant or literal is any continguous string of letters, digits, special
characters, or blanks enclosed in quotation marks ('"). A literal must contain at
least one character, and if it is more than one character long, it cannot contain
a quotation mark. There is no maximum length restriction for a literal.

Examples
1123,45XYZ$"

"THIS IS A STRING CONSTANT!

2.2 Variables

A variable name must conform to the rules for identifiers. All numerical variables
must be declared as such (see NUMBER*statement); any variable not declared as numeri-
cal will be assumed to be the name of a string. The same variable name, consequently
cannot be used for both a numerical variable and a string name., All numerical vari-
ables-have the value zero and all strings are null at the beginning of program exe-
cution.,

ExamEIes

A

NAME1
Al1X1Y2
R1234567

Substring Variables
General Form:

name$n

where name is a string variable and n is a numerical variable or unsigned numerical ‘
constant. By using substring variables, only the first n characters in name are
accessed. If the value of n is greater than the length of name, the entire string

is accessed. To illustrate, if:

-5-
STR = ''12345"
then the value of STR$3 is "123", and
the value of STR§7 is '"12345",

If n is equal to zero, namefn will act as a null string.

2.3 Functions

Although there are no facilities in STRIGOL for allowing user definition of
functions, a number of basic functions are included in the STRIGOL I language.

Numerical Functions

The numerical functions LENGTH and NUMBER return numbers as values. These functions
are used as arguments in IF statements and in numerical expressions.

LENGTH Function
General Form:

LENGTH (name)

where name is a simple string variable. This function returns the number of charac-
ters in the string name as its value. If the string is null, the value of the func-
tion is zero.

NUMBER Function
General Form:

NUMBER (name)

where name is a simple string variable or a substring variable consisting only of
numeric characters with an optional leading sign character. If name is not numeric
or is a null string, an error message will be printed and the value returned will
be zero. Any blanks in the string will be treated as zeros; consequently, the
string "3 '" upon conversion to a number would have the value 30. If a sign is
specified, it must be the first character in the string. To illustrate; if:

N1 has the value ''-163XYZ"
then the value of NUMBER(N1§4) is -163.

Boolean Functions

Boolean functions are functions which return the value TRUE or FALSE, and can only
be used as arguments in IF statements.

NULL Function
General Form:

NULL (name)

where name is a simple string variable. The function has the value TRUE if name
is a null string, and FALSE if it contains one or more characters.

NUMERIC Function
General Form:

NUMERIC (name)

where name is a simple string variable or a substring variable. The function will
return the value TRUE if name consists of a possible leading plus or minus sign
followed only by numeric characters or blanks. If a sign is specified it must be
the first digit in the string; it cannot be preceeded by blanks. The following
strings or substrings are examples of valid numerical strings:

5

+10
000397
-37

- 3
+0

The following strings are not numerical and consequently the function NUMERIC
would return the value FALSE:

+

+A
3.27E-2
3.17
10,000

String Functions

The string function STRING is used to convert numbers into strings, primarily
for use in output. The STRING function can be used only in string expressions.

STRING Function
General Form:

STRING (numb)
or
STRING (n,numb)

where n is a numerical constant or variable and numb is a numerical variable.
Using the first form of the STRING function, the resulting string will contain
no leading zeros or blanks, and will have a leading sign only if numb has a
negative value. Some examples of the first form of the STRING function follow:

N=-1, STRING(N) = "-1"
N=127, STRING(N) = ""127"
N=+127, STRING(N) = "127"
N=0 STRING (N) = Q"

Using the second form of the STRING function, the value of the function is a string
n characters long containing a leading sign character only if numb is negative and
containing leading zeros if the number of digits in numb is less than n, For ex- ‘
ample, if:

NUMB1 has the value -12

then the value of STRING(5,NUMB1) is '-0012". If the number of digits in numb
is greater than n, an error message is printed and the least significant digits
are discarded. In the preceeding example, the value of STRING(2,NUMB1l) would
be "-1'".

If the value of n is negative, the value of the function is a string whose length
is the absolute value of n and containing leading blanks instead of zeros. In
the previous example, the value of STRING(-4,NUMB1) would be '- 12", If the
length parameter is a numerical variable, it may not be preceeded by a minus sign.

The following examples illustrate the second form of the STRING function. To
illustrate, if:

NUM=-3, STRING (2,NUM) ="-3"
NUM=-3, STRING(-2,NUM)="-3"
NUM=+0 STRING (-3,NUM)="" O"
N=7,NUM=1 STRING (-N,NUM) is illegal
NUM=123 STRING (0,NUM) =""123""
NUM=123 STRING (-2,NUM)=""12"

2.4 Expressions

Numerical Expressions

Numerical expressions in 3300 STRIGOL are formed by combining numerical constants,
numerical variables, and calls to the numerical functions LENGTH and NUMBER using
the arithmetic operators +,-,*,/ denoting addition, subtraction, multiplication,
and division, respectively. During evaluation of a numerical expression all arith-
metic operations are truncated rather than rounded. Thus, the value of

5/2
is 2 and the value of

5/3
is 1 rather than being rounded to 2 as might be expected.
Normally, numerical expressions are evaluated from left to right with multiplica-
tion and division taking precedence over addition and subtraction; however, by
using parentheses to obtain desired groupings, the normal evaluation procedure
can be overriden.
Thus

A/B*C
is evaluated as

(A/B)*C

rather than

A/ (B*C)
as might be expected.

The following sequence of statements illustrates the evaluation of numerical
expressions:

ALPHA = '""ABCDEFGHIJKLMNOPQRSTUVWXYZ'"
N = LENGTH(ALPHA)+1

M = N*((N-7)/2)

K = - (M*N/M/N)+7

As a result of evaluation of these statements, N would have the value 27, M the
value 270, and K the value 6.

Other examples of valid numerical expressions are:
1
A-3
AXY+LENGTH (STR)
LENGTH(STX) +3* (-NUMBER (X$3) +R)

String Expressions

A string expression in STRIGOL consists of a string constant, a string variable,
a substring variable, a call to the string-valued function STRING, or any com-
bination of these separated by commas, where the use of a comma indicates con-
catenation. To illustrate, if:

S1=""GRASS123"
and
S2=""HOPPER"
then the expression
S1$5,S2
has the value '"GRASSHOPPER'".
Ex les
1y
MA', B
""S1",S2,STRING (N)

o1 , WORD, mneee "'WORD"’ et
X$17,"X$17", STRING (3, LX) ,""STRING (3,LX)",X$N,""."

-9-

ITI. DECLARATION STATEMENTS

3.1 NUMBER Statement
General Form:

NUMBER namel,name2,...

The NUMBER statement is a declarative statement which specifies that namel,name2,...
are numerical variables, and thus cannot be used as string names. All numerical
variables must be declared as such in a NUMBER statement. NUMBER statements can
appear anywhere within a STRIGOL program; however, any numerical variable used
in a STRIGOL source statement must be preceeded by a NUMBER statement declaring
the variable name.

Exagples

NUMBER N
NUMBER S1,A,R,XYZ,X

3.2 PROGRAM Statement
General Form:

PROGRAM name

where name must conform to the rules for identifiers. The PROGRAM statement in-
dicates the beginning of a 3300 STRIGOL source program and consequently must be
the first statement in a STRIGOL program. Name cannot appear anywhere within
the program as a numerical variable, string name, statement label, or as the
name of a routine.

3.3 END Statement
General Form:

END

The END statement indicates the end of a STRIGOL source program and must there-
fore be the last card in the source deck.

Execution of the program begins with the first executable statement providing no
serious errors were encountered during compilation. If the program falls into the
END statement, or if it is labeled and control is transferred to it, an exit back
to the operating system occurs.

-10-

IV. ARITHMETIC REPLACEMENT STATEMENT

General Form:
nv=ne

where nv is a numeric variable and ne is a numerical expression. The current
value of nv is replaced by the value of the numerical expression.ne after it

has been evaluated according to the previously stated rules for evaluation of
numerical expressions; thus, after execution of the following two statements,
the value of N would be 2: '

N
N

non

1

N+1

Other examples of valid substitution statements are:
A=-17

RXZ=NUMBER (X$RX2)-7
Z=2*(Z/2+7- (N*(6-R))/2)

-11-

V. CONTROL STATEMENTS

Control statements in STRIGOL are used to alter the normal order of execution of
statements within a STRIGOL program.

5.1 GO TO Statement
General Form:

GO TO 1label

Execution of this statement causes the statement labeled label to be the next
statement executed in a STRIGOL program.

Exaggles

GO TO A
Go To STATE12

5.2 EXIT Statement
General Form:

EXIT

This statement stops execution of a 3300 STRIGOL program and causes control to be
returned to the operating system.

5.3 1IF Statement
General Form:;

IF(arg) /t,f

where arg is a Boolean relation or Boolean function, and t and f are statement
labels.

Execution of this statement causes a transfer to the statement labeled t if ARG

has the value TRUE and to f if arg has the value FALSE. Either the t or f branch
of the IF statement can be omitted; if control is transferred to the omitted branch,
program control will fall through to the next executable statement.

The functions NULL and NUMERIC can be used for arg, or it can be a Boolean relation
of the form

asthb

where a and b are numerical constants, numerical variables, or calls to the numeri-
cal functions LENGTH or NUMBER; the operands a and b cannot be more complicated
numerical expressions containing arithmetic operators. £ is one of the Boolean
operators =,#,>,<,2,<. The value of the IF statement is TRUE if, respectively, a
is equal to b, not equal to b, greater than b, less than b, greater than or equal
to be, or less than or equal to b.

Exagples

IF(NULL(X)) /A, LOOP
IF (NUMERIC(S$N)) / s REPEAT
IF(A=7) JEXIT
IF(LENGTH(Z)213) /N,M

IF (NUMBER (X$Q) <LENGTH (X)) /,DONE

-12-

VI. STRING PROCESSING STATEMENTS

String processing statements in STRIGOL are used to create, delete, examine, and
alter strings.

6.1 Replacement Statement
General Form:

sSn=se

where sn is a simple string variable or a substring variable. This statement re-
places the contents of the string sn with the value of the string expression se.
If sn is a substring variable of the form s$n, only the first n characters of the
string s are replaced by se. For example, the following replacement statement
would delete the first three characters from the string called XYZ:

XYZ$3=

In the following example, N is assumed to be a numeric variable:

N=0

STR = "ABC"

STR§N = "123"

STR$4 = STR,STR$N, "X

After executing these statements, the value of STR would be '"123ABCXBC".
The third statement
STR$N = '"'123"

appends ''123" to the beginning of STR., In the last statement, STR$N acts as
a null string.

Examples

S=1qn
LINE$3=LINE, "LINE§Mr!, X"
A= R nmn

3 3

TEXT=""DOG" , STRING (NN) , ""CAT'", STRING (M)

6.2 SCAN Statement
General Form:

SCAN name [sel] = se2 /s,f

Where name is called the scan reference and is a simple string variable or sub-
string variable, sel and se2 are string expressions, and s and f are statement
labels. The string expression sel is called the scanning pattern.

The SCAN statement is used to examine a string for a succession of substrings
of a specified form. 1In the generic case, name is the string being examined
and sel is the string expression name is being examined for. To illustrate

the use of the SCAN statement, the following statement would examine the string
called INPUT1 for an occurrence of the string ''CAT':

-13-
' SCAN INPUT1 ["'CAT"]

The success or failure of a SCAN statement can affect program flow and can have
other consequences which will be described in detail later.

Since a scan of this type can either succeed or fail, a method is available to
control the execution of a STRIGOL program based on the success or failure of

a SCAN statement. For example, the following SCAN statement will examine the

string called TEXT for the occurrence of the string expression

1" "’WORD,H 1"

and will branch to the statement labeled X if the scan was successful, and to the
statement labeled Y if the scan was unsuccessful:

SCAN TEXT ['" ",WORD," "] /XY

By using substring variables, even more power can be obtained in a SCAN statement.
For example, the SCAN statement

SCAN WORDS$3 ["'CAT"]

would examine the first three characters in WORDS for the three characters in the
literal "CAT". The SCAN statement

SCAN XYZ$4 [STR$S]

will fail regardless of the length of XYZ unless STR has less than five characters.
Another example of the use of substring variables in a SCAN statement is:

SCAN CARD$10 [CARDS$9,'" "] /LOOP

In the above statement, control would be transferred to the statement labeled
LOOP only if the tenth character in the string CARD is a blank,

It is often desirable in examining strings to do more complex pattern analysis
than is possible using ordinary string concatenation.

By using a feature called a "filler'", a greater generality may be obtained in
the SCAN statement. There are two types of fillers, unrestricted fillers which
are denoted by string names bounded by parentheses, and fixed-length fillers
which are denoted by substring variables bounded by parentheses. A typical
example of the use of unrestricted fillers would be to examine the string LINEI
for an occurrence of the literals "AB" and "Y" not necessarily adjacent in LINE1.
An unrestricted filler can match any string; consequently, the SCAN statement

SCAN LINE1 ["AB", (ANYTHING),'"Y"]

would accomplish the desired scan. If the value of LINEl is ABBAXYZ, then the
scan would succeed with the filler ANYTHING matching the characters BAX.

‘ As one of the consequences of a successful scan, all fillers are given the value
of the portions of the string they match. In the preceeding example, ANYTHING
would be given the value BAX exactly as if the replacement statement

-14-

ANYTHING = "BAX" ’
had been executed. Because of this, the scan reference cannot also be used as a ‘
filler in the same SCAN statement,.

A fixed-length filler can match any string of a specified number of characters.
The first four characters in the string LIST could be given the name FIRST4 by
the SCAN statement.

SCAN LIST [(FIRST4$4)]

If N had the value 4, the statement could have been written
SCAN LIST [(FIRST4$N)]

As a second example, consider the following statements:

VOWELS = "AEIOU"
SCAN VOWELS [(V1$1), (V2$1), (V3$1), (V4$1), (V5$1)]

The scan would succeed, and V1,V2,V3,V4, and V5 would be given the values
A,E,1,0,U, respectively.

In many applications it is necessary to alter the contents of a string based on the
results of a scan. To do this, the string replacement statement is combined with

the basic form of the SCAN statement thereby allowing replacement, deletion, or
rearrangement of strings. In particular, if the scanning pattern is followed by .
a replacement sign and then by a string expression, the portion of the scan re-

ference which is matched in a successful scan is replaced by the value of the

string expression to the right of the replacement sign. If the value of the string
expression is null or is omitted, the matched portion is deleted. For example,

consider the following sequence of statements:

CARD = "QUEEN OF SPACES"
SCAN CARD ["QUEEN'"] = "KING"

After executing these two statements, the value of CARD would be KING OF SPACES.
The following example will delete all occurrences of the letter K from the string
X and will then transfer control of the program to the statement labeled DONE:

DELETE SCAN X ["K"] = /DELETE , DONE

Thus, if success and failure options are specified, replacement is performed
before transferring of program control., A more complicated use of the SCAN
statement is illustrated by the following example:

EXP = '"A+B"
SCAN EXP [(F1),'"+", (F2)]=F1,F2,"+"

After executing these statements the value of EXP would be changed to AB+, the
value of F1 would be A, and the value of F2 would be B.

Dynamic scanning is a special case in scanning in which tentatively defined .
fillers can be referred to dynamically during the scanning process. If a string
or substring in the scanning pattern is the same name as a filler used to the

-15-

left of it in the pattern, the current value of the filler is used in the scan.

Dynamic scanning has not yet been fully implemented in this version of 3300 STRIGOL.
An attempt to use dynamic scanning may result in an erroneous failure indication.

There are five phases to the actual scanning process:

i) evaluation of string expressions

ii) the actual scan

iii) assignment of values to fillers (naming)
iv) replacement

V) branching

i) Evaluation. Before beginning the actual scanning process, all fields are
evaluated. Any calls to the STRING function are done, and temporary strings
are created with appropriate values. Substring variables are checked for
legality; no negative lengths are allowed. Also, all fillers are set to null
strings, and their previous contents are released to available storage, If
at any point in this procedure, a negative substring variable is encountered,
an error message is printed, but evaluation continues with the invalid sub-
string being treated as a null string. If the scan reference is an invalid
substring, an error is printed and the job is aborted.

ii) Scanning. Elements of the scanning pattern must match consecutive por-
tions of the scan reference. In general the scanning process can be described
as follows:

Scanning proceeds from left to right, each scanning pattern element
matching the shortest possible portion of the scan reference depend-
ing upon the type of pattern element.

In more complicated cases, further clarification of the scanning process may
be necessary. The following rules provide more detailed descriptions of the
scanning process.

a) The scanning process proceeds element by element from left to
right starting at the first element of the scanning pattern. The
elements must match consecutive portions of the scan reference.

b) An attempt is made to match the first element starting at the
first character in the scan reference. If this is not possible,
an attempt is made starting at the second character, and so on,
If this fails, the entire scan is unsuccessful.

c) When an element is successfully matched, a forward scan is
attempted for the next element in the scanning pattern.

d) If at any point an element is not matched, rescan is attempted
for the preceeding element if it is an unrestricted filler. Rescan
is an attempt to lengthen the portion of the string reference being
matched by a pattern element and is necessary because the entire scan
cannot succeed with the previous match. If rescan fails, the entire
procedure regresses one level and is retried again., If the beginning
of the scanning pattern is reached, the first element in the scanning
pattern is moved down one character, and the entire scan is restarted.

-16-

e) When the last element in the scanning pattern has been matched, ‘
the scan is successful. The scan fails if there is no match for the

first element, or if at any point during forward scanning there is an

insufficient number of characters in the scan reference to match a

pattern element.

The various techniques of forward scanning and rescanning depend on the type
of element involved in the scanning pattern. In all cases, however, the ele-
ment must match a portion of the scan reference starting at the next character
following the portion matched by the preceeding element. The details for each
type of pattern element follow:

a) Strings. In this case, a string is considered to be a string variable,
a literal, or a substring variable after it has been evaluated. In for-
ward scanning, a string must match a portion of the scan reference which

is identical to its value. If this fails due to insufficient length in
the scan reference, no rescan is attempted, and the entire scan fails. A
null string or null-valued substring always matches.

b) Fixed-length fillers. In forward scanning a fixed-length filler
matches any substring of the length specified. If the scan reference
is not long enough, no rescan is attempted, and the entire scan fails.
If the length specification is zero, a fixed-length filler always
matches,

c) Unrestricted fillers. During forward scanning, an unrestricted .
filler always matches a null portion of the scan reference. During
rescanning, one character is added to the value of the filler pre-
viously matched. If the scan reference is of insufficient length,
the entire scan is unsuccessful. As a result of this, once an un-
restricted filler is encountered during a scan, no pattern element
matched previously can everybe moved further along the value of

the scan reference. If the match fails beyond the filler, there is
no possibility that it can be made to succeed by rematching anything
before the filler. Some consequences of this will be seen shortly.
As a special case, if an unrestricted filler is the last element of
the scanning pattern, rather than match a null portion of the scan
reference, it will be extended to match the remaining value of the
scan reference. Also as a consequence of the scanning algorithm,

an unrestricted filler which appears at the beginning of the scan-
ning pattern will match everything up to the first character matched
by the second element of the scanning pattern. Therefore, if the
only element in the scanning pattern is an unrestricted filler, it
will match the entire value of the scan reference.

A more formal presentation of the scanning algorithm is given in Appendix C,

iii) Naming. If the scan fails, all fillers are set to a null value. If the

scan succeeds, fillers are given the values associated with the portion of the

scan reference they match. If the same name appears in more than one filler,

the name is associated with the rightmost value of the filler, For example,

consider the following statements: .

X = "ABCDE"
SCAN X ["A",(F1),"C",(F1)]

-17-

After executing these statements, the value of F1 would be DE, not B.

iv) Replacement. If a scan is unsuccessful this phase is omitted. If a scan
is successful, after naming is done, the portion of the scan reference matched
by the scanning pattern is replaced by the value of the string expression to

the right of the replacement sign. In the case where a terminating unrestricted
filler has been extended to the end of the value of the scan ®eference, that
portion of the scan reference is also accessed during replacement. Any fillers
named during the scan which are also used during replacement will use the values
given them as a result of the scan rather than their values before undertaking
the scan.,

v) Branching. If at any point during the scanning process a complete scan
failure occurs, all fillers are nulled, no replacement is done, and the
failure branch of the SCAN statement is taken. On the other hand, if a
scan is successful, the success branch is taken after naming and replace-
ment are done.

6.3 Examples of Scanning

The following examples illustrate some of the situation which can arise in
scanning. Whenever fillers are used, their values upon completion of the
scan are given,

Example 1:

X="Xyz"
SCAN X [(A)," ", (B)]

the scan succeeds with

HXH
IIY Z"

[T

A
B

Example 2:

ALPHA = ""ABCDEFGHIJKLMNOP"
SCAN ALPHA [(X$5), (Y),"K", (2)]

The scan succeeds with

Y = "ABCDE"
Y = "FGHIJ"
Z = "LMNOP"

Notice that Z matches the rest of the scan reference ALPHA since it is an un-
restricted filler and is the last element of the scanning pattern,

Example 3:

NUMBERS = '"0123456789"
SCAN NUMBERS$6 [''78"]

The scan fails. Although the characters '"78" do occur in the string NUMBERS,
by restricted the scan reference to the first six characters in NUMBERS, the

-18-

portion of the string containing these characters is not accessed.

Example 4:

LIST = "A,B,C,D"
SCAN LIST [X$0] = "X,Y,"

The scan succeeds since a null-valued substring or a null string always matches.
After replacement,

LIST = "X,Y,A,B,C,D"
Example 5:

DATA = "123."
. SCAN DATA [(A), (NUM$3),"."]

The scan succeeds with

A null

NUM = "123"
Example 6:

STR = "HOUSE"

SCAN STR$3 [(A), (B), (C)]

The scan succeeds with

A null
B null
C = ""Hou"

This illustrates a fact that may not be obvious from the formal scanning rules:
if two or more unrestricted fillers occur together and the scan is successful,
all of these fillers but the last will always end up null,

Example 7:

CHAR = "ABCD"
SCAN CHAR [(X$2),(Y$3)]

The scan fails since the scan reference is of insufficient length.
Example 8:

INPUT = "'987654"
SCAN INPUT$S [INPUT$4,'5'"]

The scan succeeds. This technique provides a simple way of examining only a
specified portion of the scan reference.

Example 9:

LIST = "A,B,C,D"
SCAN LIST [(X),",",(¥),","(X),",", (V)]

-19-
The scan succeeds with

X
Y

"Cll
I'Dll

The earlier defined values for X and Y are lost,
Example 10:

STR =
SCAN STR [(FIL)]

The scan succeeds with FIL null

6.4 BACKSCAN Statement
General Form;

BACKSCAN name [sel] = se2 /s,f
where name, sel, se2, s and f are defined exactly as in the SCAN statement. The
BACKSCAN statement is like the SCAN statement, except that it examines the scan
reference in a reverse direction. It is very simple to understand the BACKSCAN
statement if the following rules are used to think about it:

i) Reverse the order of the characters in the scan reference,

ii) Scan the string normally, doing all naming and replacement as in the
SCAN statement.

iii) Reverse the order of the characters in the scan reference after replace-
ment, but do not reverse the characters in fillers defined during the scan.

A few examples of backscanning will illustrate these points:
Example 1:
LABEL BACKSCAN CARD$1 [" "] = /LABEL
This backscan will delete trailing blanks from the string called CARD.
Example 2:

DATA = HXYZH
BACKSCAN DATA [(A)]

The backscan succeeds with
A = "Zyxn
Example 3:

INPUT = '"ABCOO"
BACKSCAN INPUT$4 ['00", (X)]

-20-

The backscan succeeds with

X = "CB"
Notice that in this case, INPUT$4 accesses the last four characters in INPUT.
Example 4:

Z = "ABC"
BACKSCAN Z [(X$1), (Y$2)] = Y,X

The scan succeeds with

HCH
"BA"

X
Y
Z HCABH

-21-

VII, INPUT-OUTPUT STATEMENTS

. 7.1 READ Statement
General Form:

READ(1un) Data /s, f

where lun is a numerical constant or variable within the range 1 to 60 giving
the logical unit number of the input device, data is a simple string variable
or a substring variable, and s and f are statement labels. The READ statement
reads one physical record of data of up to 4096 (this number may be changed by
using the B-option on the STRIGOL card) characters in length from the input de-
vice that has the logical unit number lun, and gives it the name data, The in-
put record must be written in BCD. Upon completion of the read, control trans-
fers to the statement labeled s unless an end-of-file was encountered during
the read operation in which case control is transferred to statement f. Any
failure of the input device such as a feed failure or parity error causes the
input operation to be automatically retried up to a maximum of three times.

If the operation still fails, an error is printed and the entire job aborted.

In the case of the READ statement, the use of a substring variable indicates a
restriction on the maximum length of the input record. If the length specified
is negative, an error is printed and the job is aborted.

If the length specified is zero, the entire read operation is inhibited and the
end-of-file branch is selected. If the length specification is less than 4096,
the maximum length of the input record is restricted to that length. If it is

' greater than 4096, the maximum record length remains at 4096 characters. If the
length of the input record exceeds the maximum allocated buffer size, trailing
characters will be lost.

Several default options are assumed in the READ statement., If lun is omitted,
input is automatically taken from logical unit number 60, the standard system
input unit. Either the s or f branch or both can also be omitted. If the
omitted branch option is selected, control is transferred to the next execu-
table statement. To illustrate the READ statement, the following statement
will read 17 characters from the card reader, given them the name INPUT, and
if an end-of-file is not encountered, control will be transferred to a state-
ment labeled LOOP:

READ INPUT$17 /LOOP
Examples

READ(01) A$N /X,Y
READ STRING

READ (INPUT) CARD / , DONE

7.2 WRITE, PRINT Statements
General Form:

WRITE(lun) se
® or

PRINT (1un) se

-22-

where lun is a numerical constant or variable with a value of between 1 and 61,
and se is a string expression, If lun is omitted, output is automatically on
logical unit number 61, the standard system output unit. The WRITE statement
writes one physical record of data (up to 4096 characters) on logical unit number
lun. The contents of the strings named in se remain unchanged. The following

is an example of a WRITE statement that might be used to title a page of output:

WRITE "1'",TITLE," ","PAGE",STRING (PAGE)
If SE is a null string, the WRITE statement is not executed.
If output is on the printer, the first character of the output record is used

as a carriage control character and is not printed. The most commonly used
carriage control characters and their meaning are:

Char. Meaning

"on Single space after printing.

"o Double space after printing.

- Triple space after printing.

mn Page eject before printing, single

space after printing.
No space after printing; the next
line will be printed on top of this line.

ity

If the output record is over 136 characters in length, the overflow of the
output record will be single spaced on succeeding lines.

Examples

WRITE (62) "OEXAMPLE'"
WRITE (02) A,B,"B'",BL$N
PRINT "-N = ', STRING (3,N)

7.3 ENDFILE Statement
General Form:

ENDFILE 1lun

where lun is defined is in the READ statement except that it must be a magnetic
tape unit. The ENDFILE statement writes a file mark on the magnetic tape unit
specified by logical unit number lun.

7.4 REWIND, UNLOAD Statements
General Form:

REWIND 1lun
UNLOAD 1lun

where lun is defined as in the READ statement. These statements are used to
rewind and unload the magnetic tape units specified by logical unit number lun,
In either case, if the previous operation on the tape unit was a write, a file
mark is written on the tape before it is rewound or unloaded.

-23-

VIII. ROUTINES

A routine in STRIGOL is a series of statements begun by a ROUTINE declaration
statement, and ended by an ENDROUTINE declaration statement. Routines allow
the user to execute a series of statements several times within a STRIGOL pro-
gram without having to write the statements each time. A routine is entered
from the main part of the program by using an EXECUTE statement, and control
is returned through or branching to the ENDROUTINE statement., If a routine

is encountered in the normal flow of program execution, the program will by-
pass the routine. Examples of routines and their uses will be given shortly.

8.1 ROUTINE Statement
General Form:

ROUTINE name

where name is an identifier specifying the name of this particular routine.
The name used cannot appear elsewhere in the program as a variable name, a
statement label, or as the program name. Routines can appear anywhere with-
in the source program. Routine declarations cannot be nested, i.e., if a
ROUTINE statement is encountered between another ROUTINE statement and its
matching ENDROUTINE statement, it will be diagnosed as an error by the STRIGOL
compiler.

8.2 EXECUTE Statement
General Form:

EXECUTE name

where name is the name of a routine and must therefore also appear in a ROUTINE
declaration statement. This statement causes control to be transferred to the
first statement in the routine called name. Execution of statements within the
routine continues until a RETURN statement is encountered or until program con-
trol falls through to the ENDROUTINE statement; upon encountering either of these
statements, control returns to the statement following the EXECUTE statement. It
is permissible for an EXECUTE statement to appear within a routine as long as the
routine being executed is not, either directly or indirectly, the name of the
routine in which the EXECUTE statement appears. In other words, recursive calls
to routines are not permitted in STRIGOL,

8.3 ENDRQUTINE Statement
General Form:

ENDROUTINE

The ENDROUTINE statement is used to indicate the end of a routine. If no matching
ROUTINE statement has been encountered prior to the ENDROUTINE statement, an error
will be printed. If during execution of a routine, control falls through or is
trans ferred to the ENDROUTINE statement, execution of the routine is terminated

and main program execution continues from the statement following the EXECUTE state-
ment which was used to enter the routine.

-24-

8.4 RETURN Statement
General Form:

RETURN

The RETURN statement is used to terminate execution of a routine and to return
control back to the main part of the program. A RETURN statement can only
occur within a routine; if encountered anywhere else, it will be diagnosed as
an error. It is not necessary for a routine to have a RETURN statement, and
it is also possible for a routine to have more than one RETURN statement.

A typical use for routines would be in special purpose input or output routines.
For examples, consider the following routine:

ROUTINE WRITEO1

N = 80-LENGTH(FIELD)
WRITE(01) FIELD,BLANKS$N
ENDROUTINE

This routine appends up to a maximum of eighty blanks onto the output record
called FIELD and writes the resulting eighty character record on logical unit
number 01, Here it is assumed that BLANKS is a string consisting entirely of
blanks and is at least eighty characters in length.

Another use for routines is illustrated by the following example:

ROUTINE LINECHEK

LINES=LINES+1

IF (LINESSS5) /RET

EXECUTE TOTOTALER

PAGE=PAGE+1

WRITE "1",BLANKS$70,"PAGE",STRING (-3, PAGE)
RET RETURN

ENDROUTINE

This routine illustrates several features of routines. Simply by executing the
statement

EXECUTE LINECHEK

the following things will occur: first, a counter called LINES is incremented;
then, if the value of LINES is less than or equal to 55, control is returned to
the main part of the program via the RETURN statement labeled RET; on the other
hand, if the value of LINES is greater than 55, a routine called TOTALER is
executed, presumably computing and printing totals on the bottom of the page;

a page counter called PAGE is incremented; a page header is printed on top of
the next page; and control is returned to the main part of the program via the
RETURN statement.

-25-

IX. OPERATING ENVIRONMENT

9.1 Job Setup

The deck setup to compile and run a 3300 STRIGOL is as follows:

$JOB, ...
$§STRIGOL,...
PROGRAM name

STRIGOL Source Deck

END
$LOAD, 56
$RUN, ...

Data (if any)

STRIGOL Card
$STRIGOL, L, A,S,P,X,B=0,I=n

L List source language on standard output (Lun 61).
A List assembly language on standard output (Lun 61).
S At end of compilation time, generate a list of all strings

defined during compilation. Since any string name used in
a STRIGOL program is considered to be defined implicitely,
this option can be useful in detecting possible keypunch

errors which can result in accidentally defining new strings.

P Punch relocatable binary deck on standard punch unit (Lun 62),
P=n Punch relocatable binary deck on logical unit n.

X Generate load-and-go on standard load-and-go (Lun 56).

X=n Generate load-and-go on logical unit n.

B=4, Modify maximum execution time input/output buffer length

to be & characters in length. If omitted or illegal, the
normal buffer length of 4096 characters will be assumed.

I=n Indicates that the source deck is on logical unit n. If this

parameter is omitted, the source deck is inputted from the
standard input (Lun 60).

The parameters on the STRIGOL card may be in any order, and any or all para-
meters may be omitted.

Compilations of STRIGOL programs can not be stacked under a single STRIGOL
card.

(Note: FINIS cards are not required and are not allowed in a STRIGOL job.)

-26-

9.2 Compiler Pseudo Instructions ‘

Compiler pseudo instructions are commands to the STRIGOL compiler which can be
used to format the source program listing. They themselves do not appear in
the listing. Compiler pseudo instructions are written like regular STRIGOL
statements in columns 10-72 of the source deck. The pseudo instructions and
their effects on the source listing are:

(i) EJECT Eject to a new page in the listing
of the source program.

(ii) SPACE Print one blank line in the source
program listing.

(iii) SPACE n Print n blank lines in the source
program listing,

(Note: Three blank lines are automatically printed upon encountering a ROUTINE
declaration statement.)

9.3 Compilation Time Messages

During compilation a check is made to determine if certain errors have occurred.
All error messages appear immediately following the statement in which the error
was detected in the following format:

4+ message *4* .

In addition, at the end of compilation additional information is printed out if
error conditions such as undefined or multiply defined statement labels were de-
tected anywhere in the program. Due to the interaction of error conditions, the
occurrence of some errors may prevent the detection of others until those which
have been detected are corrected,

Fatal Errors

Fatal errors result in an immediate termination of compilation. The fatal error
messages are:

(i) ILLEGAL LUN SPECIFIED ON I-OPTION, meaning that a non-numerical logical unit
number was detected in the I-OPTION on the STRIGOL card.

(ii) SYSTEM CONTROL CARD READ, JOB ABORTED, indicating that a card containing
"$" in column 1 has been encountered.

(ii1) EOF CARD READ, JOB ABORTED, meaning that an end-of-file card has been
detected during compilation.

Informative Messages

Informative messages indicate either a trivial error in syntax, or an error
condition which can be corrected by the STRIGOL compiler, The informative ‘
messages are:

-27-

(i) ILLEGAL I/0 BUFFER SIZE SPECIFIED ON B-OPTION. This condition occurs if the
buffer length specification on the B-option on the STRIGOL card is not numeric,
or is less than zero. The normal I/O buffer length of 4096 characters is assumed
and compilation continues.

(ii) PROGRAM CARD MISSING, ASSUME PROGRAM JOB., meaning that the first statement
in the source program was not a PROGRAM statement. The name JOB. is assumed and
compilation continues.

(iii) ENDROUTINE CARD MISSING, indicating that the END card was encountered be-
fore a routine was terminated by an ENDROUTINE statement. The missing ENDROUTINE
card is automatically inserted by the compiler,

(iv) PRECEEDING STATEMENT WILL NOT BE EXECUTED, indicating that a non-labeled
statement has been detected following an unconditional transfer statement; there
is no way in which the statement can be executed.

Serious Errors

Serious errors will prevent the program from executing and will inhibit the printing
of an assembly language listing if requested on the STRIGOL card. The error count
which appears at the end of the program source listing is the couft of serious errors.
The serious errors are:

(i) EMBEDDED ROUTINE CARD ENCOUNTERED, indicates that while compiling a routine,
a second ROUTINE card was encountered before the ENDROUTINE card was encountered
for the first routine. This usually occurs when nested routine definitdem is
attempted.

(ii) RETURN CARD ENCOUNTERED OUT OF SEQUENCE, indicating that a RETURN card was
encountered other than in a routine.

(iii) ENDROUTINE CARD ENCOUNTERED OUT OF SEQUENCE, meaning that an ENDROUTINE
card was read before a matching ROUTINE card.

(iv) ERROR IN IF STATEMENT, indicating that the branch field is missing or
illegally specified in an IF statement.

(v) SYNTAX ERROR IN ARITHMETIC EXPRESSION, usually meaning that an extra or
missing operator has been detected in an arithmetic replacement statement.

(vi) UNBALANCED ARITHMETIC EXPRESSION, indicating that a different number of
left and right parenthesis or an illogical ordering of left and right paren-
thesis has been encountered in an arithmetic replacement statement.

(vii) 1INVALID READ STATEMENT, meaning that the input string name is missing
in a READ statement.

(viii) INVALID WRITE STATEMENT, usually meaning that the logical unit was
illegally specified on a WRITE or PRINT statement,

(ix) ILLEGAL LOGICAL UNIT NUMBER, indicating that the logical unit number on an
input/output statement is not in the range 1 to 63.

(x) INVALID SCAN STATEMENT, meaning that the "[" was missing in a SCAN statement.

-28~

(xi) SCAN REFERENCE MISSING, indicating that no scan reference appears between
the word "SCAN" and the "['" in a SCAN statement.

(xii) NO] IN SCAN STATEMENT, meaning that the "]'" was missing in a SCAN state-
ment.

(xiii) LITERAL CANNOT BE USED AS A SCAN REFERENCE, indicating that the scan
reference is a literal; the scan reference must be a string or a substring.

(xiv) PROGRAM NAME CANNOT APPEAR WITHIN A PROGRAM, indicating the program name
is also being used as a statement label, numeric variable, string name, or a
routine name,

(xv) name IS AN INVALID NAME, meaning that name is not a valid identifier,
This can also result from an illegal syntax construction in a statement.

(xvi) INVALID LITERAL, indicating that a literal has been encountered in a
string expression which contains no characters, a quotation mark, or is mis-
sing the right delimiting quotation mark,

(xvii) SYNTAX ERROR IN STRING EXPRESSION, meaning that an illegal construction
has been encountered.

(xviii) MISSING COMMA IN STRING EXPRESSION, indicating that two elements appear
in a string expression with no comma separating them,

(xix) SCAN REFERENCE ALSO USED AS A FILLER, meaning that in a SCAN statement,
the scan reference also appears as a filler in the scanning pattern.

(xx) ILLEGAL USE OF A FILLER IN A STRING EXPRESSION, indicating that a filler
appears in a string expression other than as an element of the scanning pattern
in a SCAN statement,

(xxi) name IS AN UNDECLARED NUMERIC VARIABLE, indicating that name appears
contextually as a numeric variable, but has not previously been declared in
a NUMBER statement.

(xxii) ILLEGAL SCAN REFERENCE, meaning that the scan reference is an ex-
pression rather than a string or substring.

Near the end of compilation, additional messages are printed out as follows:

(i) STRINGS DEFINED DURING COMPILATION. A 1list of all strings which were im-
plicitly defined during compilation is generated if the S-option was requested
on the STRIGOL card.

MULTIPLY-DEFINED
(ii) THE FOLLOWING SVATEMENT LABELS \ror UNDEFINED

ROUTINES UNREFERENCED

A list of all multiply-defined, undefined, and unreferenced statement labels
and routines is printed out. The unreferenced statement labels and routines
lists are informative messages only.

-290-

S ROUTINES NUMBERS
(iii) THE FOLLOWING NUMBERS WERE ALSO USED AS STATEMENT LABELS
STATEMENT LABELS STRING

A list of all identifiers used more than once for a different purpose is printed
out. Identifiers must be uniquely defined within a program.

At the end of compilation one of two messages appears:

(i) n ERRORS DURING COMPILATION, EXECUTION SURPRESSED. This indicates that n
serious errors were detected during compilation; all further processing of the
program is discontinued.

(11) NO ERRORS DURING COMPILATION, indicating that the source program contained
no syntactic errors.

It is possible that errors will be detected during the assembly phase which were
not detected during the compilation phase. If this occurs, the following message
will be printed:

NUMBER OF LINES WITH DIAGNOSTICS n
Normally this indicates that COMPASS coding was included in the STRIGOL source
deck, and that errors occurred in these statements. If this diagnostic occurs

and no COMPASS coding was done, consult NMSU Computer Center Systems Programmers.

9.4 Execution Time Messages

The standard format used in printing the majority of execution time diagnostics
is the following:

ERROR IN RRRRRRRR CALLED FROM XXXXX, Ml"‘Mn

where RRRRRRRR is the name of the routine in which the error occurred, XXXXX is
the address from which the routine was last called, and Ml"'Mn is the error
message.

The execution time error messages and their meaning is:

(i) BAD TAPE ON LUN nn, JOB ABORTED. During an I/0 operation a non-recoverable
parity error was encountered on a magnetic tape nn.

(ii) COMPARE ERROR ON LUN nn, JOB ABORTED, A card was read on logical unit nn
which generated a persistent compare error. This usually means that the card is
off-punched.

(iii) BINARY CARD LUN nn, JOB ABORTED, A binary card was read on logical unit
nn. Binary I/0 is not allowed in 3300 STRIGOL,

(iv) TILLEGAL I/O ON LUN nn, JOB ABORTED. An attempt was made to issue an I/0
operation on logical unit nn which would not be meaningful; e.g., attempting to
rewind the typewriter,

-30-

(v) NEGATIVE STRING LENGTH IN READ STATEMENT, JOB ABORTED. The 1ength speci- -
fications was given in a READ statement, but it was less than zero. ‘

(vi) END-OF-JOB CARD ON LUN nn, JOB ABORTED. The system end-of-job card was
read on logical unit nn. The job *s aborted immediately upon encountering the
end-of-job card.

(vii) ERASE ERROR ON LUN nn, JOB ABORTED. During an attempt to recover from a
parity error on an output operation on logical unit nn, a parity error occurred
during an erase. No further recovery is possible if this occurs.

(viii) NEGATIVE SUBSTRING LENGTH. A substring variable with a negative substring
specification has been detected. If this occurs in a NUMERIC test in an IF state-
ment, the string in question will not be numeric. If the left part of a string
replacement statement is a negative substring, the replacement statement will be
ignored.

(ix) NEGATIVE SUBSTRING IN REPLACEMENT EXPRESSION., This indicates that a nega-
tive substring has been detected in a string expression. It is treated as a null
string.

(x) STATIC STRING LENGTH OVERFLOW. This error message is generated if the length
of the string expression in a WRITE or PRINT statement exceeds the maximum I1/0
buffer length. Trailing characters are discarded.

(xi) TRUNCATION ERROR XXXXXXXX. 1In a call to the STRING function, insufficient
string length was allowed to generate the complete value of the number, XXXXXXXX
is the value of the number which could not be converted.

(xii) STRING NOT NUMERIC. 1In a call to the NUMBER function, the string could
not be converted to a number because it contained other than numeric digits.
The value returned is zero.

(xiii) NULL STRING. An attempt was made to convert a null string to a number
via the NUMBER function. The value returned is zero.

(xiv) NEGATIVE FILLER LENGTH. A negative length was specified in a fixed-length
filler. The filler is nulled and ignored.

(xv) SCAN TABLE OVERFLOW, JOB ABORTED, More than 20 elements occurred in the
scanning pattern. This is an implementation restriction which can be altered,

(xvi) NEGATIVE SCAN REFERENCE LENGTH, JOB ABORTED. The scan reference is a
negative substring.

(xvii) NEGATIVE PATTERN ELEMENT LENGTH. A substring in the scanning pattern
has a negative length specification., The substring is treated as a null string.

Appendix A

Sample Programs

*

READ
DeBL

* % ¢ *»

LOOP

LQoP

NDELA

DELB

*

RET

DONE

PROGRAM LONGSEG
IHIS PHROGKRAM FINDS THE LONGEST COMMON SEGMENT NF TWO LISTS,

NUMBER N
READ LISTS / » DONE
ANK SCAN LISTS (72 #)= /DEBLANK

SCAN LISTS ((A),#,%2,(B)]
WRITE #-2,L]STS

EXECUTE LCOMSEG

WRITE 2 #,L0NG

GO TO READ

ROUTINE LCOMSEG

ROUTINE LCUMSEG FINDS THE LONGEST COMMON SEGMENT OF THE TWO LISTS,
A AND B, THE ROUTINE RETURNS THE LONGEST SEGMENT UNDER THE NAME
LONG. THE ROUTINE FINDS THE LUNGEST MATCHING SEGMENT STARTING WITH
THE FIRST CHARACTER: THEN STARTING WITH THE SECOND CHARACTER; ETC.
LONG=
N=1
SAVE=
1 SCAN B [AEN] /,DELA
SAVE=ASN
N=N+1
[F (NSLENGTH(A)) /1.00P1
IF (LENGTH(SAVE)SLENGTH(LONG)) /UELR
LONG=SAVE
SCAN A [(F$1))= /,RET
IF A IS SHORTER THAN THE LONGEST SEGMENT SO FAR, RETURN,
iF (LENGTH(A)DLENGTH(LONG)) /L00P
RETURN
ENDROUT INE
END

NO ERRORS DURING COMPILATION

Example 1

ABChE, DEABC
ABC

ABCDEF GHAL,BUBCDAEFGHXYZ
EFGH

Example 1

Sample Output

PROGRAM POLISH
IHIS PROGRAM DOFS A TRANSLATION OF A STATEMENT IN NORMAL INFIX
NOTATION TO REVERSE POLISH NOTATION. UNARY GUPERATORS ARE NOT
ALLOWED AND ALL UPERANDS MUST BE ONE CHARACTER IN LENGTH,

[2 I B)

e TABLE IS THE HIERARGCHY TABLE
TABLE=#az0a(0a+1a"1a®2A/24) 3%
READ READ CARD /oEXIT
DEBLANK SCAN CARD (# #)= /UEBLANK
PRINT #~#,CARD
e EXTRACT A CHARACTER

LOOP SCAN CARD [(CHARS$1)]= /»PRINT
* CHECK YO SEE [F THE CHARACTER IS AN OPERATOR
SCAN TABRLE [#a%,CHAR,(N1%1)] /0P

* IF IT 1S AN OPERAND, ADD TO TARGET STRING
TSTRING=TSTRING,CHAR

GO TO LOOP
oP SCAN CHAR [z(Z%) /LO0P2
SCAN CHAR (#)#¢] /»CHECK

* ON A), EXTRACT EVERYTHING ON STACK TO PREVIOUS (
BACKSCAN STACK ((FILL),#(#])=
TSTRING=TSTRING,FILL
GO0 TO LOOP
CHECK IF (NULL(STACK)) /LO0P2
BACKSCAN STACK [(CHAR1%1)]= '
SCAN TABLE (#a#,CHAR1,(N231)])
I[F (NUMBER(N1)SNUMBER(N2)) /MORE
STACK=STACK,CHAR1,CHAR
GO TO LOOP
* LEFT PARENTHESES GO ONTO THE OPERATOR STACK
MORE TSTRING=TSTRING,CHAR1
GO TO CHECK
Loor2 STACK=STACK,CHAR
GO TO LOOP
PRINT BACKSCAN STACK [(FILL)]=
hd EMPITY OPERATOR STACK
ISTRING=TSTRING,FILL
WRITE #20%, TSTRING

» NULL TARGET STRING FOR NEXT DATA CARD
TSTRING=
GO TO READ

EXIT EXIT
END

NO ERRORS DURING COMPILATION

Example 2

A=B+C-1)

ABC+U~=

A=zB*(C+Dw(A/(R=8B)))

ABCDARB=/w%w+w=z

Example 2

Sample Output

NO ERRORS JURING COMPILaATION

PROGRANM EFDITOR

T W THlS PROGKAM KFADS I TExXT AND PRINTS N CHARACTERS PER LINE, EXTRA

*

BLANKS ARE IMNSERTED HETWEEN WORUS TO FILL OUT LINES, THE INPUT TEXT
* IS ASSUMED TC BE FREE FORMATTED,
NUMRER w,L
” READ [N N AND CONVERT IT TQO A NUMBER
READ NN%2
NENUMBER(NN)+1
LeiNUMBER(NM)
PRINT # INPUT TEXT.0eo?
* REAU [N THE INPYUT TEXT

READ READ INPUT /,EDIT
TEXTzTEXT11NPUT’¢ £
PRINT # 7, INPUT
GO TU READ
EDIT PRINT #=-TEXT EDITED TO #,STRING(L),# CHARACTERS PER LINE, ¢, #
» DELETE EXCESS BLANKS FROM TEXT
DEBLANK SCAN TeXT (% #)s% # /DEBLANK

» REMOVE POSSIRLE LEAUING BLANK
- SCAN TEXTS$1 (% #)=

MORE SCAN TEXT {(WORD),% #)= /s LASTLINE
LINESLINE,WORD, 2 #)
IF (LENGTH(LINE)=N) /PRINT
IF (LENGTH(L]INE)ZN) /MORE

LELENGTR(LINE)Y-LENGTH(WORD) -1
LINEsSLINESL
TEXTHNSWORD, # #

* INSERT SLANKS TO FILL OUT LINE
EXECUTE INSERT

PRINT PRINT # ZsLINE
LINE=
GO TOMORE

LASTLINE PRINT # Z,LINE

ROUTINE INSFRT
- THIS ROUTINE INSERTS BLANKS INTO LINE UNTIL THE LENGTH OF LINE IS
* EQUAL TO NN CHARACTERS
BACKSCAN LINES1 (2 2])=
LENUMBER(NN)Y=LENGTHC(L INE)
BLANK=
LINFX=
L.OOP LINEX=
BLANKSBLANK, # #
LOOP1 SCAN LINE [(WORD),BLANK]= / MOREX
LINEX=LINEX,WNORD,RLANK, % #
L=L-1
IF (L#0G) /1.O0RPY
LINFsLINEX, L INE
NETURN
MOREX LINESLINEX,LINE
GO TO LOOP
ENDROUT INE
ENY

Example 3

INPUT TEXT.... @

TEXT

SOME OF THE CHARACTEKISTICS OF A PREDICTIVFE ANALYZER, A SYSTEM OF
SYNTACTIC ANALYSIS NOW UPERATIONAL ON AN IBM 7094, ARE DELINEATED, THE
ADVANTAGES AND DISADVANTAGES OF THE SYSTEM ARE DISCUSSED IN COMPARISON TO
THUSE OF AN IMMEDIATE CONSTITUENT ANALYZER, DEVELOPED AT THE RAND CORPORATION
WITH ROBINSONS ENGLISH GRAMMAR, IN AUDITION, A NEW TECHNIQUE 1S DESCRIBED
FOR RePeTITIVE PAT4 FLIMINATION FOR A PREDICTIVE ANALYZER, WHICH CAN NOW CLANl
EFFICIENCY BNTH IN PROCESSING TIME AND CORF STORAGE REGUIREMENT,

EDITED TU 69 CHARKACTERS PER LINE....

SOME UF THF CHARACTERISTICS OF A PREDICTIVE ANALYZER, A SYSTEM OF
SYNTACT]C ANALYSIS NOW CPERATIONAL ON AN IBM 7094, ARE
DELINEATEFD, THE ADVANTAGES AND DISAOVANTAGES OF THE SYSTEM ARE
DISCUSSED IN COMPAKRISON TO THOSE OF AN IMMEDIATE CONSTITUENT
ANALYZER, DFVELOPFD AT THE RAND CORPORATION WITH ROBINSONS
ENGLISH GRAMMAR,., IM ADDITION, A NEW TECHNIQUE IS DESCRIBED FOR
REPETITIVE PATH ELIMINWATION FOR A PREDICTIVE ANALYZER, WHICH CAN

NOA CLalM EFFICIENCY BOTH IN PROCESSING TIME AND CORE STORAGE
REQUIREMENT,

Example 3

Sample Output

Appendix B

Internal Specifications

Appendix B

Data Structure

All strings are stored internal to a STRIGOL program as a threaded list, headed
by a three-word string specifier. The name of a string is the address of the
specifier rather than of the data string, since it is likely that a data string
will be completely moved from where it was originally stored during the course
of program execution, Each character in a data string is stored in the first
character of a separate word in memory with the lower 15-bits in the word con-
taining the address of the next word of the string. The string specifier con-
tains the address of the first word and last word on the list and the current
length, If the string is null, all three words in the specifier are zero. The
following example illustrates this data structure.

If the address of the specifier for a string called XYZ is 77352 then after exe-
cuting the STRIGOL statement

XYZ = "ABC123"

the string XYZ might be organized in core as follows:

77352 52161 52161 A 6¢200

77353 14100

77354 6 60000 B 25121
25121 C 77331
77331 1 50147
50147 2 14100
14100 3 0

The pointer in the last word of a string always has a value of zero, It should be
fairly obvious from this example that it is not likely that characters in a string
will be stored in consecutive core locations.

There is one exception to the universal use of this type of data structure. Literals
can never be changed, so, in order to economize on the amount of core usage, literals
are stored in a completely different manner, The characters in a literal are stored
as a continguous string of characters, and like the normal data strings, literals are
also headed by a three word specifier, but in a somewhat different format. A literal
specifier contains the first character address, the last character address and the
length of the literal. Since the length of a literal is always equal to the LCA-FCA+1,
it may seem redundant to carry along the length; however, as it turns out, this type
of data storage is also used in the input-output routines, and these routines require
both types of information for reasons which will be explained later. Using the literal
from the preceding example, if the specifier is at location 77756, the literal could
be represented as follows:

77756 377123
77757 377130 ABC1l123
77760 6

B.1

Most of the processing in a STRIGOL program is done by executing machine language
subroutines and passing a parameter list to the subroutine to allow the appropriate
data manipulation, In most of these routines, part or all of the parameter list
corresponds to a string expression, As it turns out, the format of the parameter
list for a string expression is independent of the subroutine using the expression;
in other words, if the same string expression is used in a SCAN statement, a PRINT
statement, and a replacement statement, the parameter list corresponding to the
string expression would be identical in each case.

For each element in a string expression, there corresponds a one, two, or three
word element in the parameter list, depending on the type of string element. In
the case of a simple variable, a one word parameter element is generated by the
STRIGOL compiler. For example, to the following portion of a string expression

e XX,
would correspond the following COMPASS coding in the assembly listing.
LST XX

The opcode LST is a special indicator to the STRIGOL subroutines that the address
portion of the machine word contains the address of a simple string variable.

A substring variable generates a two word parameter element. If the substring
variable has a constant length field, such as in the following example:

.. LA85, ...
LSTM A
5
The substring variable
B$N

would result in the parameter element

LSTA B
N

A literal is somewhat of a special case, since it has no name. To solve this
problem, a unique name of the form

L,nnn
is created to identify the literal, where nnn is a unique three digit number for
each literal used in a program. In the previous example, the operator field began
with the letters "LST'"; this is a reflection of the fact that a data string is
stored as a list.

Similarly, since a literal is stored as a linear, contiguous array of characters,
the operator field for the parameter begins with "LIN", Thus the literal

...,""12345"

B.2

could result in the parameter element
LIN L.013

which would indicate (if true) that this was the 13th literal declared in the
program,

A string element which is a filler differs in its parameter representation only
in that it is preceded by a word with an operator of "FILL" and no address field.
For example the string element

..., (ABC$3),...

would translate to

FILL
LST™ ABC
3
as another example, consider the following string expression:

XX$3,"ABC", (F),"'DEF",A,B$N, (F1$3)

If the two literals were the first declared in the program then the entire ex-
pression would be translated to

LSTM XX

3
LIN L.001
FILL
LST F
LIN L.002
LST A
LSTA B

N
FILL
LSTM F1

3

by the STRIGOL compiler. If the literals were not the first declared in the pro-

~gram, the parameter list would differ only in the numbers of the literals.

It was mentioned previously that linear data storage was also used in conjunction
with input-output operations. In particular, since it is, of course, not possible
to directly write from a data string or read into a list structured data string,
it is necessary to reserve a block of core to be used as an I/0 buffer, In order
to make the size of this I/O buffer as flexible as possible, the area for the
buffer must be set up in the main program. In addition, the name of the specifier
must be IOAREA, and it must be declared as an entry point. The first word of the
specifier contains the character address of the first character in the I/0 buffer,
the second word should be zero, and the third word should be zero, and the third
word is the number of characters available in the buffer. The following example
will set up an I/0 buffer 1000 characters long:

B.3

ENTRY TI0AREA.

TOAREA, 00,C IOBUFF
OCT 0
DEC 1000
TIOBUFF BSS,C 1000

STRIGOL Subroutine Calling Sequences

To simplify the COMPASS expansion of a string expression, the following conventions
have been adopted:

If se is a string expression, then[se] is its COMPASS expansion
according to rules stated previously., Similarly, if str is a
string or substring then [str] is its expansion, For example, if:

se = A, (B$3), X$N
then
[se] = LST A

FILL
LSTM

LSTA

Z XN w

For each STRIGOL subroutine, its general form in STRIGOL is given along with the
generalized COMPASS expansion. A few specific examples are also given. All STRIGOL
subroutines used from a COMPASS program must be declared as externam symbols.

STRIGOL COMPASS
READ (1lun) se /s,f ENA lun
RTJ READ
[se]
uJp s
uJp f
READ X /GOOD, BAD
ENA 60
RTJ READ,
LST X
uJp GOOD
uJp BAD

B.4

READ (LUNXX) INPUT$50

WRITE (lun) se
or
PRINT (lun) se

WRITE ""PAGE'", PAGENO

/ ,EOF LDA
RTJ
LST™

UJp
uJp

ENA
RTJ

[se]

ENA
RTJ
LIN
LST

PRINT (10) DATA, VALUE$X ENA

ENDFILE 1lun

ENDFILE OUTFILE

REWIND 1un

UNLOAD 1un

str=se

A=B,C

A$3=

RTJ
LST
LSTA

ENA
RTJ

LDA
RTJ

ENA
RTJ

ENA
RTJ

RTJ
[str]
[sel
RTJ
LST
LST
LST

RTJ
LS™

B.5

LUNXX
READ,
INPUT
56
*+2
EOF

lun
WRITE

60
WRITE.
L.001
PAGENO

10
WRITE.
DATA
VALUE
X

lun
ENDFILE

OUTFILE

ENDFILE,

lun
REWIND.

l1un
UNLOAD,

CONCAT.

CONCAT.
A
B
C

CONCAT.
A
3

ARRAY=X§$3,""ABC'", ARRAY $N

EXECUTE name

EXECUTE TRANSLAT

ROUTINE name name
ROUTINE TRANSLAT TRANSLAT
RETURN (in routine name)

RETURN (in routine TRANSLAT)

GO TO name

GO TO LOOP

EXIT (in program name)

ENDROUTINE (in routine name)

ENDROUTINE (in routine TRANSLAT)

str=STRING (numb)

X$3=STRING (count)

str=STRING(size, numb)

RTJ
LST
LST™M
LST
LIN
LSTA
RTJ
RTJ
UJp
UJP
uJp,1
uJp,I
uJp
uJp
uJP,1
uJp,1I
uJp,I
ENQ
LDA
RTJ
[str]
ENQ
LDA

RTJ
LSTM

ENQ,S
LDA
RTJ
[str]

B.6

CONCAT
ARRAY
X

3
L.001
ARRAY
N

name

TRANSLAT

ok Y

name
TRANSLAT
name
LOOP
name
name
TRANSLAT

0
numb
STRING.

0
COUNT
STRING.
X

3

size
numb
STRING.

ABC$X=STRING (M, N) LDQ
LDA

‘l’v RTJ

LSTA

numb=NUMBER (str) ENA
1 RTJ
[str]

IF (NULL(str)) /y,n LDA
AZJ,EQ
uJp

IF(NULL(FLAG)) /,OK LDA
| AZJ,EQ
uJp

IF (NUMERIC(str)) /y,n RTJ

[str]
| AZJ ,EQ
! uJp

IF (NUMERIC (CARD$N)) /LOOP RTJ
LSTA

AZJ,EQ

| . IF (NUMBER(X$3)>n) /BUMP, FLAG ENA
RTJ
LSTM

LDA
LDQ
AQJ,GE
uJp

SCAN str [se] /s,f RTJ

(BACKSCAN) [str]
[sel
uJp
uJp

SCAN str [se;l=se; /s,f RTJ
[str]

[se1]
OCT

[se2]
uJp
UJp

B.7

M

N
STRING.
ATC

v
N

numb
NUMBER.

name+2

y
N

FLAG+2
*+2

0K

NUMERIC.

y
n

NUMERIC,
CARD

N

Loop

T.001
NUMBER,
3 -
X
T.001
N
BUMP
FLAG

SCAN, (BSCAN.)
s

f

SCAN, (BSCAN.)
-0

s
f

SCAN NAME [DATA] /GOOD

BACKSCAN CARD§&3 [BLANK]=

SCAN STR[(F$N) ,"X"] =Nxn

BACKSCAN A$1 [A$1]=B$1,A

/ ,REPEAT

JWOOPS, C

RTJ
LST
LST
UJP

RTJ
LST™™

LST
OCT
UJp
uJp

RTJ
LST
FILL
LSTA

LIN
OoCT
LIN
UJp

RTJ
LSTM

LSTM

OoCT
LST™M

- LST

ujp
UJp

B.8

SCAN,
NAME
DATA
GOOD

BSCAN,
CARD

BLANK
-0

*+2

'REPEAT

SCAN.
STR

L.001

L.001
*+1

Appendix C

The STRIGOL Scan

